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1. Introduction 
 

OVERFLOW 2.2 is a three-dimensional time-marching implicit Navier-Stokes code that can also operate in 

two-dimensional or axisymmetric mode.  The code uses structured overset grid systems.  Several different inviscid flux 

algorithms and implicit solution algorithms are included in OVERFLOW 2.2.  The code has options for thin layer or 

full viscous terms.  A wide variety of boundary conditions are also provided in the code.  The code may also be used 

for multi-species and variable specific heat applications.  Algebraic, one-equation, and two-equation turbulence models 

are available.  Low speed preconditioning is also available for several of the inviscid flux algorithms and solution 

algorithms in the code.  The code also supports bodies in relative motion, and includes both a six-degree-of-freedom (6-

DOF) model and a grid assembly code. Collision detection and modeling is also included in OVERFLOW 2.2.  The 

code is written to allow use of both MPI and OpenMP for parallel computing applications. 

OVERFLOW 2.2 has two basic operational modes.  The code can still be run in the original OVERFLOW 

mode, in which the OVERFLOW-D specific inputs do not have to be specified.  The original OVERFLOW mode 

requires that all grids be supplied and assembled using PEGASUS 5 or SUGGAR prior to the start of the solution 

process.  An example of a grid set for the original OVERFLOW mode is shown in Fig. 1.1.  The OVERFLOW-D mode 

requires additional input files and NAMELIST input to control the DCF grid assembly, off-body grid generation, and 

6-DOF or specified motion simulation.  Only the near-body grids need to be supplied in OVERFLOW-D mode since 

Cartesian outer grids can be automatically generated prior to grid assembly using DCF. An example of a grid set for 

OVERFLOW-D mode is shown in Fig. 1.2.     

 

 
 

Figure 1.1.  Multi-element airfoil grid for the original OVERFLOW mode.  The grid assembly was performed 

external to OVERFLOW using PEGASUS 5. 

 

 
 

Figure 1.2. Multi-element airfoil grid for the OVERFLOW-D mode.  The grid assembly and Cartesian 

background grid generation was performed internally using DCF.  
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OVERFLOW 2.2 will automatically decompose near-body and off-body grid systems to achieve load 

balancing for parallel runs using MPI, based on the number of processors selected for that run.  The decomposed grids 

are automatically reassembled prior to generation of any output files, and thus the decomposition is completely 

transparent to the user.  

This manual describes uncompressing and compiling the code, off-body grid generation, hole cutting, input 

files, run sequence and code execution, 6-DOF simulation, adaptation, parallel processing, and post-processing. This 

manual is not intended to be a comprehensive guide.  Rather, it is intended as a quick reference for users already 

familiar with the theory used to develop the flow solver and utility codes. 

 

1.1 Code History 
The OVERFLOW 2

1,2
 Navier-Stokes computational fluid dynamics (CFD) code was developed by merging 

the OVERFLOW
3,4

 flow solver with the 6-DOF moving body capability of the OVERFLOW-D flow solver
5,6,7,8,9

.  The 

lineage of the code is shown in Fig. 1.3.  The overset grid method was developed by Benek, Buning, and Steger
10

 to 

allow the structured grid flow solvers of the 1980’s to be easily extended to more complex geometries than the grid 

generators would support at that time.  The OVERFLOW flow solver originally incorporated the diagonal form of the 

implicit approximate factorization algorithm of Pulliam and Chaussee
11

 and a second-order in space central difference 

approximation for the inviscid fluxes.   Mixed second and fourth order smoothing was added to the explicit and implicit 

side of the equations to provide numerical stability.  OVERFLOW derives its name from an acronym for “OVERset 

grid FLOW solver.” 

 

 
 

Figure 1.3.  Development path for OVERFLOW 2.2. 

 

A number of upgrades have been made to the original code including: 

 

1. Lower Upper-Symmetric Gauss Seidel (LU-SGS) implicit solution algorithm and a Roe upwind inviscid 

flux scheme
12

 

2. Multigrid solution procedure, low-Mach preconditioning, and a central difference/matrix dissipation 

inviscid flux scheme
13
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3. Parallization with OPENMP and MPI
14

 

4. AUSM inviscid flux  scheme
15

 

5. Dual time stepping implicit solution algorithm
16

 

6. HLLC
17

 inviscid Riemann flux algorithm 

7. Two WENO 5
th

 order upwind algorithms
18

 

8. An unfactored Successive Symmetric Over Relaxation (SSOR) implicit solution algorithm
17

 

9. Three hybrid Reynolds Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) turbulence 

models
17

 

10. Wall functions for the transport equation turbulence models
17

 

11. An HLLC and WENO based species transport equation capabiilty
17

 

 

1.2  OVERFLOW 2.2 Capabilities 
 The following is a summary of the capabilities currently included in OVERFLOW 2.2: 

  

 Dimensions: 

  - 2D 

  - Axisymmetric 

  - 3D 

 Flow equation sets: 

  - Compressible Euler 

  - Compressible thin-layer Navier Stokes 

  - Compressible full Navier Stokes 

  - Low Mach preconditioning 

 Inviscid flux algorithms: 

  - 2
nd

/4
th

/6
th

-order central difference with smoothing 

  - Yee Symmetric TVD 

  - AUSM+  upwind 

  - 3
rd

-order Roe upwind 

  - 3
rd

-order HLLC upwind 

  - 5
th

-order WENO and WENOM upwind 

  - Low-Mach preconditioning available for central difference, Roe, HLLC, WENO, and WENOM 

 Flux limiters for upwind schemes: 

  - Koren 

  - Minmod 

  - van Albada 

 Smoothers for central difference schemes: 

  - F3D dissipation scheme 

  - ARC3D dissipation scheme 

  - TLNS3D dissipation scheme 

  - Matrix dissipation scheme 

 Implicit solvers: 

  - ADI Beam-Warming block tridiagonal solver with either central difference or upwind Steger- 

    Warming flux Jacobians 

  - Steger-Warming 2-factor scheme 

  - ADI Pulliam-Chaussee scalar pentadiagonal solver 

  - LU-SGS solver 

  - D3ADI diagonalized solver 

  - SSOR solver 

  - Low-Mach preconditioning for Beam-Warming, Pulliam-Chaussee, D3ADI, and SSOR solvers 

 Turbulence models: 

  - Baldwin-Lomax algebraic model with wake model 

  - Baldwin-Barth 1-equation transport model 

  - Spalart-Allmaras 1-equation transport model 

  - Spalart-Allmaras detached eddy simulation (DES) and delayed DES (DDES) hybrid RANS/LES  

    models 
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  - k-ω  2-equation transport model 

  - SST 2-equation transport model 

  - SST DES and SST DDES 2-equation transport hybrid RANS/LES models 

  - SST Multi-Scale (MS) 2-equation transport hybrid RANS/LES model 

  - Wall functions for all of the transport turbulence models 

  - Rotation and curvature corrections for 1- and 2-equation models 

  - Temperature correction for 2-equation models 

 Boundary conditions: 

  - Slip wall 

  - Adiabatic no-slip wall 

  - Constant temperature no-slip wall 

  - Symmetry plane 

  - Polar axis 

  - Periodic  

  - Riemann far-field 

  - Constant total pressure and temperature inflow 

  - Constant pressure outflow 

  - Extrapolation outflow 

  - Specified mass flow outflow 

  - Frozen 

  - Overset interpolated 

 Gas models: 

  - Perfect gas 

  - Variable γ (mixture of perfect gases) 

  - Multi-species 

 Moving body: 

  - Prescribed motion 

  - Six-degree-of-freedom (6-DOF) motion 

  - Collision detection and simulation 

 Grid generation, assembly, and adaptation 

  - Automatic generation of Cartesian off-body grids 

  - Grid assembly using DCF 

  - Adaptation of Cartesian off-body grids to flow variables or body motion 

 Code performance: 

  - MPI coarse-grained parallelism 

  - OpenMP fine-grained parallelism 

  - Automatic grid decomposition for load balancing 

 

1.3  Navier-Stokes Equation Implicit Solution Procedure 
OVERFLOW 2.2 solves the Navier-Stokes in generalized coordinates.  The Navier-Stokes equations may be 

written as 

 

0=
∂
∂+

∂
∂+

∂
∂+

∂
∂

ζηξ
GFE

t

q
���

�

                                           

 (1.1) 

 
where q is the vector of conserved variables 
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The linearized Euler implicit form of Eq. (1.1) including sub-iterations is given by 
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Here θ=0 for first order time differencing, and θ=½ for second order time differencing.  An artificial time term 

( ) 








∆+
∆

τθ1

t
 has been explicitly added for dual time stepping.  This term is not included when using Newton 

subiterations.  The pseudo time (∆τ) may vary throughout the flow field when a local time step is employed.  The 

artificial time term must converge at each physical time step (i.e., ∆q
n+1,m+1 

= 0) to assure time accuracy.  The SD term is 

defined as 
( )

t∆
∆++ τθ1

1  for dual time stepping and as ( )θ+1  for Newton subiterations.  The two time steps are 

equal to each other and do not vary in the field for the Newton subiteration (∆t=∆τ).  The explicit viscous and inviscid 

fluxes are included in the term RHS given by 
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Eq. (1.3) has the general matrix form Ax=b. The first bracketed term in Eq. (1.3) is the left hand side matrix A.  

The second bracketed term in Eq. (1.3) represents the vector b.  ∆q
n+1,m+1

 = q
n+1,m+1 

- q
n+1,m

 contains the change in the 

solution vector at the latest time step (n+1) and sub-iteration (m+1) when sub-iterations are employed in the solution 

process.   ∆q
n+1,1

 = q
n+1,1

 – q
n,1

 contains the change in the solution vector at the latest time step (n+1) if no sub-

iterations are used.  If the time step remains constant everywhere in the field then Eq. (1.3) represents a Newton sub-

iteration (∆t=∆τ).  If the pseudo time step is allowed to vary throughout the field then Eq. (1.3) represents a dual time 

stepping algorithm.  In both cases the sub-iteration is used to improve the accuracy of the solution at each global time 

step.  The individual grids are solved implicitly, but the overset interpolated boundaries are updated explicitly at each 

sub-iteration.  All of the physical boundary conditions with the exception of the periodic boundaries are also treated 

explicitly.  Hence the sub-iterations improve the global convergence at each time step by allowing a global exchange of 

information among the grids and improving the accuracy of the physical boundaries.   

Solving the above system of discreet equations requires inversion of the A matrix.  Direct inversion of the 

matrix A for three dimensional flows requires a large amount of computational time and memory.  Various 

approximations have been made to expedite the procedure in the past.  The Newton subiteration form of Eq. (1.3) can 

be factored
19

 in space 
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where the factorization error (Error) is given by 
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The factorization error term in Eq. (1.5) is usually ignored, resulting in an approximate factorization of Eq. (1.3).  The 

factorization error is scaled by the time step squared and cubed for three dimensional calculations. The factorization 

error is only scaled by the time step squared for two dimensional and axisymmetric calculations since 0=∂ Cς .  The 

factorization error can limit or prevent convergence for large time steps.   
The approximate factorization in Eq. (1.5) is called a three factor alternating direction implicit (ADI) scheme.  

A, B, and C are block tridiagonal matrices for structured grids with central difference or first-order spatial upwind 

implicit flux Jacobians.  The factored system can be solved efficiently by inverting the block tridiagonal matrices in 

each direction.   

The A, B, and C matrices in Eq. (1.5) may be decomposed into eigenvalues (Λ) and eigenvectors (X) as 
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Pulliam and Chaussee
11 

suggested pulling out the eigenvector matrices from Eq. (1.5), producing the following system 

of equations 
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Eq. (1.8) results in a scalar pentadiagonal matrix form in each factored direction when mixed second and fourth order 

smoothing is included on the implicit side of the equation.  The approximations used to derive Eq. (1.8) do affect time 

accuracy for CFL numbers greater than one.  The inversion of a scalar pentadiagonal matrix at each point can be done 

very efficiently, making this algorithm extremely fast in terms of time/iteration/point.  The diagonal schemes 

implemented in OVERFLOW 2.2 have made the code one the fastest available for obtaining steady state solutions. 

 The Pulliam-Chaussee
11

, Beam-Warming
19

, and the diagonally-dominant ADI (DDADI)
20

 implicit algorithms 

in OVERFLOW 2.2 are three-factor ADI schemes.  The F3D
21

 algorithm is a partially flux-split two-factor ADI 

scheme that uses Steger-Warming flux vector splitting.  The LU-SGS
10

 algorithm in OVERFLOW 2.2 is also a two-

factor scheme.  Dual time stepping and local time stepping methods have been implemented to improve convergence 

and stability for these algorithms.  For many unsteady applications, the time step required for numerical stability is too 

small to be practical.  The three-factor ADI schemes have been the preferred solution algorithm in the past because of 

their low memory requirements and because they are relatively fast in terms of time/point/iteration.  For a grid of 

dimensions (jd, kd, ld) the memory required to store the flux Jacobian matrices during the solution process is 

19*max(jd*kd, jd*ld, kd*ld) for the scalar pentadiagonal algorithm and 80*max(jd*kd, jd*ld, kd*ld) for the Beam-

Warming
19

 algorithm since the matrices may be inverted a plane at a time in each computational direction.  

 Several flow solvers have been developed to solve the unfactored system of equations (Eq. (1.3)) using 

relaxation procedures.  This approach eliminates the factorization error at the expense of more computational work per 

time step and more computational memory since the entire implicit flux Jacobian matrix (A) must be stored for the 

solution process.  First-order upwind Steger-Warming
21

 inviscid flux Jacobians and central difference thin-layer 

viscous Jacobians are used in the formulation in OVERFLOW 2.2.  The symmetric successive over-relaxation scheme 

(SSOR) used in OVERFLOW 2.2 can be written as  
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The subscripts L and R denote the left and right blocks respectively of the tridiagonal matrices.  The overbar indicates a 

pre-multiply by the inverse of the diagonal matrix AD+BD+CD where the subscript D denotes the diagonal block of the 

tridiagonal matrices.  The update level of ∆q during the iterative matrix solution procedure is given by mm.  The 

scheme uses a forward (Jacobi) sweep in j and symmetric (Gauss-Seidel) sweeps in k and l.   For a forward sweep in k 

and l, the update levels are defined as  

 

mmmlmmmlmmmkmmmk =+==+= 2,11,2,11       (1.10) 

 

For a backward sweep in k and l, the update levels are defined as 

 

12,1,12,1 +==+== mmmlmmmlmmmkmmmk       (1.11) 

 

A symmetric sweep consists of a forward and a backward sweep.  Multiple symmetric sweeps (normally 10) are 

performed at each sub-iteration.  The relaxation parameter (Ω) is normally set to 0.9.  The SSOR solver uses more 

memory than the factored solvers.  
 OVERFLOW 2.2 also includes the ability to use grid sequencing and a multigrid solution algorithm in the 

solution process.  Grid sequencing provides an easy way to get the solution off the ground and can significantly reduce 

the time required to obtain a converged solution.  In grid sequencing the input grid is coarsened by removing every 

other point for each level of sequencing used.  The solution begins on the coarsest grid and moves to the successively 

finer grids after a specified number of iterations.  This allows solutions to set up quickly.  OVERFLOW 2.2 also 

includes a V-cycle multigrid capability.   A correction term is calculated on each set of coarsened grids and applied to 

the residual at each time step.  This allows low frequency errors to be removed from the solution rapidly and can reduce 

the number of time steps required to reach a steady state solution.  

 

1.4 Low-Mach Number Preconditioning 
 OVERFLOW 2.2 also includes a low-Mach number preconditioning capability.  At low speeds the 

eigenvalues of the Navier-Stokes equations 
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become widely separated and the equation set becomes stiff.  Here U is the contravariant velocity and c is the local 

speed of sound.  Preconditioning is used to scale the eigenvalues to remove this stiffness.  Note that this scaling of the 

eigenvalues destroys the time accuracy of the equations.  The low Mach number preconditioned Navier-Stokes 

equations can be written 
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where Γp is the preconditioning matrix and pq
�

are the preconditioned flow variables..  The preconditioned eigenvalues 

using Smith-Weiss preconditioning become 
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where β is defined as  

 

( )[ ]min
2 ,1,minmax ββ M=                                                                                               (1.15) 

 

and βmin is a user defined variable normally set to 3MREF
2
. 

 

1.5 Species Equations 
 A scalar transport equation is included in OVERFLOW 2.2 for multi-species calculations.  The species 

equations are solved decoupled from the Navier-Stokes equations and from each other.  The species equation in 

generalized coordinates can be written as 
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Here ci is the species mass fraction.  The following relationships are used to obtain thermodynamic properties for each 

species. 
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1.6 Non-Dimensional Flow Variables 
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OVERFLOW 2.2 solves the non-dimensional Navier-Stokes, turbulence, species, and motion equations. The 

thermodynamic equations (based on a perfect gas assumption) used by the flow solver are 
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The following definitions are used involving the specific heats cp and cv: 
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Alternate forms of the thermodynamic equations can be derived, such as 

 

( ) iep

p
a

ργ
ρ
γ

1

2

−=

=
                                                                                                                           (1.23) 

 

Rearrangements of the specific heat and gas constant relations can be made as well: 
 

( ) ( )
pv ccR

γ
γγ 1

1
−=−=                                                                                                           (1.24) 

 
Non-dimensionalization of flow quantities follows that of the F3D and ARC3D codes.  Denoting non-

dimensional quantities by an asterisk, we define 
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∇=∇

=

=

=

=

=

=

==

==

=

=

=

=

∞

∞

∞

∞

∞

∞

∞∞∞

∞

∞∞∞∞

∞

∞

∞

L

k

k
k

a

e
e

R

c
c

R

c
c

R

R
R

T

T

a

TR
T

p

p

a

p
p

L

ta
t

a

V
V

L

x
x

i
i

v
v

p

p

*

*

*

2

*

*

*

*

2

*

2

*

*

*

*

*

µ
µµ

γ

γρ

ρ
ρρ

                                                                                                                    (1.25) 

 

A number of these non-dimensionalizations were driven by the desire to maintain non-dimensionalized 

thermodynamic equations in the same form as the dimensional equations.  Substituting, we see that the following non-

dimensional equations hold: 

 

( )

***

*

*
**2*

****** 1

Tce

p
TRa

eTRp

vi

i

=

==

−==

ρ
γγ

ργρ

                                             (1.26) 

 

Non-dimensionalizations used for moving-body simulation parameters are given in Chapter 5. 
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